DISTRIBUTED PROVISION OF (ENERGY) SERVICES AND THE POTENTIAL USE OF DECISION SUPPORT SYSTEMS TO IDENTIFY PROJECTS

S Szewczuk CSIR Built Environment January 2010 ACP S&T Programme

An African Perspective – taking stock

Question: How do we move Africa from a 'cow-patty' energy economy to a modern energy economy?

A Fundamental Challenge

A fundamental challenge is to redefine the paradigm for sustainable development in the energy context

Basic Premise for Sustainable Development

Energisation and electrification is only sustainable if there are economic activities to pay for it

Development Challenge

The challenge is to increase access to safe and affordable energy services to enable productive economic activities and improvement in quality of life whilst decreasing the harmful side-effects of current energy practices

RATIONALE FOR ENERGIZATION PROJECTS

- Africa's economic priorities strongly formed by need to alleviate poverty
- 500 million African people without access to modern forms of energy
- Meeting of Millennium Development Goals
- Gain experience by piloting energy projects "action research"
- Implementation of projects supported by sound research & development

Why were projects initiated?

Policy Objectives relating to Energy White Paper

- Increasing access to affordable energy services
- Improving energy governance
- Stimulating economic development
- Managing energy related environmental and health impacts
- Securing energy supply through diversity

Shift in Emphasis

- Past = Number of Connections
- Future = Sustainable Economic and Social benefits
- Better "bang" for Governments buck
- Payment for services

CSIR ENERGY SCENARIOS FOR AFRICA

IN PARTNERSHIP WITH SHELL

our future through science

Slide 10

SCENARIOS

Help us to

- consider key forces driving change
 understand the dynamics of the environment
 recognize new possibilities
- make decisions
- Understand future Science and Technology requirements, and plan the necessary research and development

CSIR – Shell African Energy Scenarios

Key drivers and pivotal forces in Africa, southern Africa and South Africa

Global Energy Drivers

- Technology
- Resource constraints
- People and priorities

- NEPAD and AU energy policies
- Poverty reduction
- Good governance
- Appropriate technology choice

CSIR ENERGY SCENARIOS FOR AFRICA - I

APPROPRIATE TECHNOLOGY CHOICES:

• Choices taken by Africa in the near future on its energy economy will have far reaching consequences on:

socio-economic development
 sustainable use of ecosystems and
 its non-renewable resources

on a continental scale

IN MAKING THESE CHOICES......

Many decision support processes will be required:

• Need access to good information, data & statistics

Dearth of good information, data & statistics in Africa:

• Obvious priority area for further investment

"To measure is to know"

Holistic nature of the energy economy

Slide 15 Courtesy: Dr G Venter - CSIR

Case study: Renewable Energy for Rural Electrification in Eastern Cape

- 3 year multinational EU-SA investigative project
- Objective: identify rural electrification opportunities using renewable energies linked to existing & new economic activities
- Renewable energy resources investigated: wind, mini-hydro & biomass
- Geographic Information Systems (GIS) to present & interpret results
- Output: identification of implementable projects emphasis on objective technological evaluations

Possible demand from new economic activities (demand side)

- Agriculture
 - irrigation
 - processing
- Forestry processing
 - sawmills
 - pulp
- Eco-tourism
 - Wild Coast

Wind assessment at 60 m height

Lifetime unit cost calculations for supply side & demand side options

- 6.0% discount rate net of inflation
- 15 year term
- Systems sized for annual potential energy demand
- Electrical distribution costs included
- Separate approaches for wind, hydro, biomass
- Various economic activity options investigated

Example: geo-spatial analysis to determine costs of wind generated electricity

Potential small hydro sites larger than 10kW identified by modelling techniques (supply side)

Cost of electricity from hydro

Biomass generation technologies

Technology type	Capacity	Availability	Efficiency
Pyrolysis gasification IGCC/steam cycle >	10 Mw _e	92%	32%
ARBRE-type gasification CCGT	>5 MW _e	82 %	27%
Combustion steam cycle	>5 MW _e	95%	24%
Small-scale gasification	<1 MW _e	50%	19%
Pyrolysis oil CCGT	<5 MW _e	95%	38%

Impact of Eastern Cape Project

- Obtained first hand understanding of complexity of poverty alleviation – technical & non-technical
- Developed Integrated Energy/Economic Framework algorithm for poverty alleviation
- Identified energy projects at Hluleka Nature Reserve & Lucingweni village on Wild Coast

INTEGRATED ENERGY ECONOMIC FRAMEWORK

Hybrid mini-grids: Hluleka & Lucingweni

- Minister of Minerals & Energy mandated the NER (now NERSA) to facilitate piloting hybrid mini-grids
- Experience & understanding gained to inform decision & policy makers
- NER contracted CSIR to develop implementation plan
- Implementation partner Shell Renewables
- Integrated Energy/Economic Framework applied
- Mini-grids integrated with providing potable water
- Energy efficiency concepts applied
- At Lucingweni new economic activities initiated based on high value crops – done with Agricultural Research Council (ARC)

Hybrid Mini-Grid Energy Systems

Agricultural Research Council (ARC): Identifying & training entrepreneurial farmers

Impact of research work

- Department of Energy (DoE) funded a project to independently review the pilot hybrid mini-grid energy systems
- Department of Science & Technology (DST) mini-grids were used as a case study in study on "Technology Transfer for Poverty Alleviation"
- CSIR: lessons learnt applied to
 - updating Integrated Energy/Economic Methodology
 - Investigating conversion of organic waste into biogas
 - Investigations into distributed/decentralised power generation in particular those systems with wind energy technologies
 - Developing numerical models that simulate and evaluate targeted and systemic interventions for a virtual rural village by studying the effect of different development economic strategies in a community – prior to any implementation
 - Identifying shortcomings in wind data resource map
 - Scoping CSIR's Integrated Research Infrastructure Platform (IRIP)

Integrating analytical tools into development planning

Much information is readily available in electronic format

- Natural resources
- Physical data e.g. rainfall, conservation areas
- Social/economic data e.g population, water supply,

Can Information and Communication Technologies be used to assist in economic planning?

South African Renewable Energy Resource Database (SARERD)

A joint project between DoE/CSIR/Eskom

Potential Maize Suitability: demand side

Potential sorghum suitability: - demand side

Slide 33

Existing forestry in Eastern Cape Province

Slide 34

Potential for Pine in Eastern Cape

Slide 35

Potential for Eucalyptus in Eastern Cape

HomerGIS: off-grid electrification planning tool

- Planning tool being developed by CSIR, Eskom and DoE
- HOMER optimisation software sourced from the National Renewable Energy Laboratory (NREL) of the USA
- South African Renewable Energy Resource Database (SARERD) wind, solar, hydro and biomass database being developed by CSIR, DME & Eskom
- Geographic Information Systems (GIS) integrated Homer and SARERD
- Current SA wind atlas inadequate
- Further development of HomerGIS on hold awaiting updated wind atlas

Wind Atlas for South Africa

- 3 year project to update SA's wind resource map
- Global Environment Facility (GEF) and Danida funding
- SANERI financial manager of project
- CSIR wind monitoring and micro-scale modelling
- University of Cape Town meso-scale modelling
- South African Weather Services extreme winds
- Risø of Denmark technical support
- Wind data develop grid connected wind farms & mini-grids both essentially distributed generation systems

Wind Atlas Study Area

Base 802359 (R01345) 6-95

Rural Energy & Economic Development (REED)

Core of CSIR's Integrated Research Infrastructure Platform (IRIP)

Develop an integrated R&D platform to optimise the technical delivery services for sustainable human settlements through a systems approach

Concentrating solar power technology

Slide 4

Comparative costs* (In ZAR, note SA cheaper than DLR projects in Spain)

*After Thomas Roos - DPSS

Components of mini solar hybrid power plant

Microturbines – power core of IRIP

Microturbines are derivatives of the turbocharger

Typical output range 20-300kW

Relatively advanced technology now becoming commercially available

Building on CSIR know-how & expertise (built novel technology demonstrator, but funding dried up)_____

Exhaust heat can be used for

variety of applications, eg heat for AD

Turbec 100kw microturbine

Future work related to distributed generation

- CSIR's Integrated Research Infrastructure Platform (IRIP)
 - Provision of services close to point of use
 - Based on micro-gas turbine (SA core team still in place)
- Strengthen links with experts local & international
- Short term: demonstrate system on CSIR capmus
- Medium term: integrate into small rural villages
- Longer term: integrate into rural communities

Future work

- •Demonstrate methane rich biogas production by combining multiple sources of organic waste streams in anaerobic digester
- Demonstrate running of microturbine on biodiesel
- Demonstrate 'fuelling' of microturbine with both biogas and solar thermal energy – not done as yet and also seems to be novel
- Potential collaboration with EU & other international partners
- Patents, Intellectual Property?
- •Wind atlas project: transfer lessons learnt to other renewable resources
- Lessons learnt contributing to sustainable human settlements
- •Ultimate objective:
 - Development of a tool to identify a number of small bankable distributed generation projects that could be aggregated up into a project portfolio that will interest bankers and reduce transactional costs

THANK YOU

